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INTRODUCTION 

Modern seismic networks, either permanent or temporary, can 
nowadays easily produce such large volumes of data that man-
ual analysis is not possible. E!ective and consistent automatic 
procedures for the detection and processing of seismic events 
are required to homogeneously process large datasets and to 
provide rapid responses in near real time.

One of the "rst modular components of the automatic 
analysis chain is generally a tool for the identi"cation of seismic 
phases on the recorded seismic waveforms and the determina-
tion of their onset time, a process known as phase arrival pick-
ing. A variety of procedures for the automatic picking of phase 
arrivals have been proposed and successfully implemented 

based on the analysis of variations in amplitude, frequency, 
particle motion, or a combination of these. #ey typically deal 
with the "rst arriving P
detect secondary arrivals.

Most of the picking algorithms can be classi"ed into three 
main families: energy methods, autoregressive methods, and 
neural network approaches.

#e family of the energy methods is probably the larg-

declared when the ratio between a short-term average (STA) of 
the signal (or of a characteristic function of the signal) and its 

(for this reason they are o$en also called “STA/LTA” algo-
rithms).

#e algorithms of the second class, the autoregressive 
methods, determine an optimal pick time a$er an arrival has 
been already detected (e.g., by an energy method). #ese algo-
rithms study the variation of the statistical properties of the 
signal, trying to "nd the point in time that best separates the 

In the third family of methodologies, a neural network is 
trained to recognize and pick phase arrivals. #e analysis can 

(Gentili and Michelini 2006).
#ough in many ways the most basic class of picking algo-

rithms, energy methods are nowadays also the most widely 
used. Based on simple mathematical operations, they require 
little computation and are therefore suitable for the analysis of 

-
more, they need to process few or no samples a$er the phase 
arrival, an essential requirement for time-critical applications, 
like earthquake early warning. #e main drawback of energy 
methods with respect to autoregressive and neural network 
approaches is that they demand signi"cant a priori knowledge 
of the signal properties to correctly set the operational param-
eters (e.g., triggering thresholds, time-average windows, valida-
tion parameters).

Finding an optimal setup for an energy-based picker can 

rate of false picks. Also, the in%uence of each parameter has to 
be carefully assessed. #is operation is frequently carried out 
by a trial-and-error approach. General “recipes” for improved 

e.g.
do not apply equally well to all the circumstances (di!erent fre-
quency bands, microseismicity, teleseismic events).

In this paper we introduce an optimization scheme for 
choosing the most appropriate set of parameters for a pick-
ing algorithm by using real picks and data acquired by a spe-
ci"c seismic network. #e optimal model is chosen through 

objective function that depends on the comparison between 
automatic picks and manual picks performed on a dataset rep-
resentative for a seismic network. #e idea of optimizing the 
parameters of an automatic picker through a global optimi-
zation method was "rst introduced by Olivieri et al.
Here we further develop the methodology by: (1) de"ning an 
advanced objective function that integrates di!erent metrics in 
the comparison of automatic and reference manual picks, and 
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(2) using seismic noise alongside earthquake recordings in the 
optimization process. 

We show applications to two STA/LTA algorithms: 

et al. 2012, this issue).

ENERGY-BASED PHASE PICKING

In the energy-based class of algorithms, at each sample, the 

of the signal, is compared with the value that can be predicted 
from the analysis of the previous samples. If the ratio between 
the current value and the predicted one is greater than a certain 
threshold, then a possible trigger is declared. Generally the cur-
rent and the predicted values are respectively obtained through 
a short-term average (STA) and a long-term average (LTA) of 

-
tion on the declared trigger to discriminate true phase arriv-
als from noise spikes and to improve the time estimation of 

et al. 2012, this 
issue).

One of the "rst and most widely used methods for auto-

and the LTA of a characteristic function of the signal. #e 
characteristic function is based on a combination of the signal 

algorithm sensitive to both the amplitude and the frequency 
of the signal. #e STA and LTA are continuously calculated 
in two consecutive moving time windows: a short-time win-
dow (STA) that is sensitive to seismic events, and the long-time 
window (LTA), which provides information about the tempo-
ral amplitude variation of noise in the signal. When the STA/

At this point the algorithm performs several analyses on the 
signal to distinguish between the “true” triggers associated to 
earthquake arrival phases and the triggers related to the pres-
ence of seismic noise. In the "rst case the triggers are accepted, 
while in the second case they are rejected and declared to be 
“noise.” A trigger is only accepted as a seismic phase if some 
constraints applied to the durations and amplitudes of peaks, 
the number of zero crossing of the signal, and the end of event, 

they play an important role in the correct declaration of picks 

noisy signal that may contain gaps and spikes. 
#e FilterPicker algorithm is thoroughly described in 

et al. 2012 (this issue). Here we remark that it is a broad-
band phase detector and picker algorithm especially designed 
for real-time operations. #e algorithm, loosely related to the 

-
-

ing during large events and produce a realistic time uncertainty 
on the pick.

OPTIMIZATION METHOD

#e determination of optimal picker parameters is based on 

comparison between automatic and manual picks performed 
on real seismic traces. A global search for the optimal param-
eters set in the multidimensional parameter space is carried out 

search technique well adapted for solving nonlinear problems. 
For the search for the best parameter set, we assume that a well-
calibrated picker reproduces the same picks as a manual opera-
tor, for recordings of seismic events and ambient seismic noise.

Fitness Function
#e de"nition of the "tness function is critical for any opti-
mization method since it quanti"es the quality of a solution. 
Given a set of reference traces containing manually picked 
events (one manual pick) and ambient seismic noise (no man-
ual pick), we search for the optimal parameter values that sat-
isfy three requirements: 

1. automatic picks must be as close as possible to manual 

2. 

triggering on ambient seismic noise must be limited.
From these conditions, the "tness function used during the 
optimization is de"ned as:

Fitness  (1)

where M is the number of traces, W is a normalization con-
stant, and gi is a function of the ith trace de"ned from the num-
ber of automatic picks  and of manual picks,  ( = 
0 or 1), in one of the following ways:

P and  = 1:

   
  (2)

where is the automatic pick closest in time to the manual 
pick and P 

-
ber of admissible automatic picks for traces containing event 
recordings.

if P and = 1:

   

where  is the kth automatic pick of the ith trace, and  is 
the corresponding manual pick.



Seismological Research Letters Volume 83, Number 3 May/June 2012 543

if  = 0 and = 1:

   , (4)

if = 0:

   
. (5)

Following the previous de"nitions, the value of normalization 
constant W in Equation 1 is de"ned as:

  (6)

where  is the number of traces without manual picks and 
 is the number of traces with manual picks used during the 

optimization. For our inversion, a penalty in "tness function 
is introduced only when the picker produces more than P = 4 
picks in the analyzed trace. 

#e function gi measures the quality of a set of pick param-
eters on the individual ith trace. #e values that gi can assume 
depend on the manual and automatic picks obtained for the 
trace using the picker parameters of the considered model. #e 

gi are respectively 0 and 1, 
indicating the worst and best solution quality for the given trace. 
If the trace is a recording of an earthquake with a manual pick, 
the value of the gi function will be high when the picker gives a 
number of picks less than or equal to the number of admissible 
automatic picks P -
mates in time the manual pick as suggested by Equations 2 and 

gi will be zero when, for the given trace, there 
is a manual pick but no automatic picks (Equation 4). Finally, 
for recordings of ambient seismic noise without manual picks, 
the function gi increases when the number of automatic picks 

number of automatic picks is zero (Equation 5).

TEST CASE

We used the data acquired by the stations of the Irpinia Seismic 
et al.

optimization method described above. #e network is installed 
in the Apennine chain, southern Italy, to study and monitor the 

Ms 
et al. 2010). 

2 and is composed 
of 24 stations, each of which is equipped with a strong-motion 
accelerometer and with either a short-period velocimeter or a 
broadband seismometer (Figure 1B).

We tested two energy-based algorithms for automatic pick-
-

mented in the Earthworm real-time seismic so$ware (Johnson 
et al. et al. 

#e optimization is based on a dataset of 105 vertical-com-
ponent velocity traces from ISNet seismometers, composed of 

re%ect the current seismicity of the area, characterized by many 
earthquakes of small magnitude (ML < 2.5) located inside the 
network and a few events having higher magnitude (ML
located outside the network (Bobbio et. al. 2009). #e "rst P 
arrivals have been manually picked, and the pick uncertainty 

four di!erent classes described in Table 1.
We performed a preliminary inversion to understand, for 

each automatic picker, how the parameters that regulate the 

"tness function is weakly dependent on the parameter value 

them to their default values and focused the subsequent opti-
mization process on the determination of the remaining 11 
parameters. In the case of FP we veri"ed that the "tness func-

#e search interval for the time constants used in the 

interval has been centered on the default value, with the search 
interval ranging between zero and twice this value.

#e optimization has been performed by the genetic algo-

variable probability of mutation between 0.0005 and 0.25. In 

of parameters to optimize. #e search is interrupted when the 
"tness function becomes stable between one generation and 
another. Figure 2 shows the convergence history of the optimi-

-
ness function monotonically grows with the generation num-
ber, with a rapid increase during the "rst steps of search and a 
weaker growth during the last steps, up to a stable "nal value. 
#e convergence of the "tness function is very rapid in the case 

-

generations. In both cases the "nal value of the "tness function 

TABLE 1
Quality Classes for Manual Picks and Associated Picking 

Uncertainty in s.

Class Manual Picking Uncertainty m

0 ! ≤ 0.05 s
1 0.05 s ≤ ! ≤ 0.1 s
2 0.1 s ≤ ! ≤ 0.2 s
3 0.2 s ≤ ! ≤ 0.5 s
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Validation of Parameters

by vertical components of ISNet velocimeters during the period 

#e main part of the selected earthquakes is formed by 
local events of small magnitude (ML < 2.5) detected either by 
an automatic procedure or by manual operator and located 
inside the network. #e remaining part is formed by a selec-
tion of regional events with a distance from the network’s 
center smaller than 1,000 km and mainly located around the 

!"
#$
%&
$'
()
*+
,-
&
!

.)/*$(#- 0123

!"

#"

$" !" %"

4 -5-(*/

063
073

083 0.3

 Figure 1. (A) Location of the events selected to validate the optimized sets of parameters and (C) the corresponding magnitude/
distance distribution. (B) ISNet seismic network (dark gray stations are equipped with short-period velocimeter and light gray stations 
have a broadband sensor). (D) Magnitude/distance distribution of the event subset used for the parameters optimization. 
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TABLE 2
Earthworm Picker (PICK_EW) Parameters. For a detailed explanation of the various parameters see Mele et al. (2010).

Italics indicate parameters that were not optimized. 

Parameter Short Description Suggested Value Optimized Value

Itr1 Parameter used to calculate the zero-crossing termination count 3 5.15

MinSmallZC Defines the minimum number of zero-crossings for a valid pick 40 75.35
MinBigZC Defines the minimum number of big zero-crossings for a valid pick 3 3
MinPeakSize Defines the minimum amplitude (digital counts) for a valid pick 20 13.43
MaxMint Maximum interval (in samples) between zero crossings 500 500
i9 Defines the minimum coda length (seconds) for a valid pick 0 0.473
RawDataFilt Filter parameter that is applied to the raw trace data 0.985 or 0.939 for 

broadband sensor
0.979

CharFuncFilt Sets the filter parameter that is applied in the calculation of the char-
acteristic function (CF) of the waveform data

3 0.0162

StaFilt Filter parameter (time constant) that is used in the calculation of the 
short-term average (STA) of CF

0.4 0.15

LtaFilt Filter parameter (time constant) that is used in the calculation of the 
long-term average (LTA) of CF

0.015 0.021

EventThresh Sets the STA/LTA event threshold 5 2.34
RmavFilt Filter parameter (time constant) used to calculate the running mean of 

the absolute value of the waveform data
0.9961 0.9961

DeadSta Sets the dead station threshold 1200 2056
CodaTerm Sets the normal coda termination threshold (counts) 49.14 49.14
AltCoda Defines the noisy station level at which pick_ew should use the alter-

nate coda termination method
0.8 0.8

PreEvent Defines the alternate coda termination threshold for noisy stations 1.5 1.64
Erefs Used in calculating the increment to be added to the criterion level at 

each zero crossing
5000 5000

ClipCount Specifies the maximum absolute amplitude (in counts zero-to-peak) 
that can be expected for the channel

2048 2048

TABLE 3
FilterPicker (FP) Parameters

Parameter Short Description Suggested Value Optimized Value
Tfilter Longest period for a set of filtered signals from the differential signal 

of the raw broadband input trace
300∆t 0.865 s

Tlong Time scale used for accumulating time-averaged statistics of the input 
raw signal

500∆t 12 s

S1 Trigger threshold used for event declaration. A trigger is declared 
when the summary CF exceeds S1 

10 9.36

S2 A pick is declared if and when, within a window of predefined time 
width, Tup after the trigger time, the integral of the summary CF 
exceeds the value S2 · Tup

10 9.21

Tup Time window used for pick validation 20∆t 0.388 s
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Apennine chain (central and southern Italy) and in southern 
Greece (Figure 1A). We manually picked the "rst arrival for 
earthquake traces, and we de"ned the pick quality according to 
the schema in Table 1. #e manually picked dataset is composed 

re%ects the availability of BB sensors among the velocimeters of 
ISNet (Figure 1B). #e noise traces do not have manual picks, 
and we introduced them into the dataset to evaluate the correct 
behavior of optimized pickers on traces without seismic events.

-

2006).

optimized pickers meet the conditions imposed for the opti-
mization. Moreover, these distributions help us to quantify 
the number of false picks (other phases than the "rst arrival) 
produced by each picker, as these can o$en confuse associa-
tion algorithms that follow the pickers in an automatic analysis 
chain. For the traces with manual picks, the number of traces 
having more than four picks (the number of admissible auto-

the dataset containing event recordings. #ese results are bet-

-

vided more picks than FP. For this case the number of traces 

-

better respects the conditions imposed for the optimization of 
the parameters. 

In the following we subdivide the analyzed traces into four 
di!erent categories: 

1. traces picked manually only (i.e., missed automatic picks), 
2. traces picked automatically only (i.e., false automatic 

picks), 
traces picked both manually and automatically (i.e., cor-
rect automatic picks),

4. traces with neither automatic nor manual picks (i.e., noise 
traces with no picks).

Only the traces where the time di!erence between the closest 
automatic and manual picks is less than 2 s are encompassed in 
the third category. #is large time window is needed to fully 

Following this schema, a quantitative analysis of the pick-
ers’ performance is shown in Figure 4. #e pie diagrams show 
that the optimized parameters used with both the pickers give, 

number of traces picked manually and automatically (category 

automatic nor manual picks (category 4) and a lower number of 
traces picked only automatically (category 2). #is means that 

the number of false picks.
We analyzed the performance of the pickers on the dif-

ferent types of velocimetric sensors installed in ISNet. #e 
results, synthesized in Table 4, show the percentage of BB and 

-
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 Figure 2. Convergence history of the optimization process: fitness value as a function of the number of generations. Light gray: 
optimization of the PICK_EW picker. Black: optimization of the FP picker.
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 Figure 3. Number of automatic picks per trace containing manually picked events (A) and ambient seismic noise (B). Light gray: 
number of automatic picks per trace obtained using PICK_EW with the parameters proposed by Pechmann (1998, 2006); Dark gray: 
number of automatic picks per trace obtained using PICK_EW_OPT; Black: number of automatic picks obtained by FP_OPT. In order to 
make the figures clear, only data up to 10 picks per trace are shown.
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 Figure 4. Quantitative performance of the automatic pickers.
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-
ers picked correctly a signi"cantly greater number of traces in 

associated manual picks, are very similar for both SP and BB 
data. #is shows that, for the three di!erent cases, the qual-
ity of automatic picks is independent of the type of sensor. For 
this reason, in the following, we will show the results for the 
whole dataset, without discriminating between the SP and the 
BB subcategories. 

#e pie diagrams in Figure 5 show the percentage of traces 

of manually picked traces. #e diagrams are organized accord-
ing to the four pick-quality classes of Table 1. We interpret the 
pick-quality class as a marker of the signal-to-noise ratio of the 
"rst arriving P wave. For both pickers the number of automatic 
picks decreases with the decrease of signal-to-noise ratio. In 
all cases the percentages of traces picked by optimized param-

suggested parameters, and these di!erences appear more pro-
nounced with the decrease of signal-to-noise ratio. #is means 

TABLE 4
Short-period and broadband picked traces (as a 

percentage) in category 3 for the PICK_EW, PICK_EW_
OPT, and FP_OPT pickers

Picker

Percentage of correctly picked traces 
(category 3) for different sensor types

% of automatically 
picked BB traces

% of automatically 
picked SP traces

PICK_EW 59 53
PICK_EW_OPT 74 87
FP_OPT 90 90
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 Figure 5. Quantitative performance of the automatic pickers on traces organized by manual picking-quality classes (see Table 1).
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"rst arrival, especially in cases of noisy recordings where the 
signal-to-noise ratio of the "rst arrival is low. 

Figure 6 shows the distributions of residuals (manual time 
minus automatic time) within each class of picking accuracy. 
In all three cases, for each trace the automatic pick that is clos-
est to the manual pick is used for the evaluation of residuals. 
#e mean value and the standard deviation for each picking 
class (reported in "gure legends) are in all three cases com-

parable. #e dispersion of distributions increases with the 

values of distributions are near zero for the traces with manual 
pick in class 0 and 1, while they are greater than zero for the 

not symmetric with respect to the zero value, and they pres-
ent a positive coda indicating delayed picks with respect to the 
manual readings.
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Mw et 
al.

ML 

aligned with respect to the manual pick (located for all traces 
at 2 s). On each trace the black and gray vertical bars are the 

-

give a multiple of automatic picks a$er the manually picked 
"rst arrival, probably associated with secondary arrivals. For 
this event the di!erences between automatic and manual picks 
are, on average, of the order of a few tenths of a second for the 
traces with clear "rst arrival, while the di!erences increase for 
the more noisy traces or for "rst arrival with an emergent char-

for both pickers, and the di!erences between automatic and 
manual picks are of the order of a few hundredths of a second 
for all the traces.

Test Using Phase Association
In typical seismic network operations, automatic phase picks 
are used to detect and locate seismic events through the asso-
ciation of picks recorded at di!erent stations. #e phase asso-
ciation criterion can be as simple as a time coincidence or can 
include more advanced checks on the compatibility between 
the arrival times at the stations and the possible location of the 
source, given the velocity model. #is latter approach is gener-
ally more robust, since it prevents random time coincidences of 
noise energy from being declared as events. #e phase associa-
tion acts as a "lter on the picked arrivals, removing all those 

might produce several spurious picks for noise or later arrivals. 
An e!ective association algorithm can then successfully "lter 

automatic picker targeted at event detection have to be evalu-
ated in connection with the phase association algorithm.

Here we use Earthworm’s phase association module, 

EW and FP and the binder con"guration currently opera-
tional at ISNet (Iannaccone et al. 2010). In this con"guration 
an event can be declared when at least "ve P-arrival times are 
available.

For our test, we created three separate datasets composed 
of recordings of events inside the network, events outside the 
network, and false events. 

events that occurred within the ISNet network between 

from the ISNet bulletin (http://isnet.na.infn.it/cgi-bin/isnet-
events/isnet.cgi
recordings and with at least "ve manual picks. #irty-nine per-
cent of the events in this selected dataset have been manually 

detected, since the automatic procedure originally failed due to 
non-optimized picking parameters and/or temporary station 
failures.

automatically picked arrivals without making any kind of 
pick selection, and we detected the events using the binder. 
An event is declared automatically detectable only when the 

the events into classes of magnitude using a binning width of 
0.6 and we computed, for each class, the percentage of detected 

the optimized pickers lead to a higher percentage of declared 
events in all the magnitude classes. #is di!erence increases 
when the local magnitude decreases. All events with magni-
tude greater than 2.5 are detected using both the optimized 
pickers, while for the events with magnitudes less than 2.5, the 

-
ference between the two percentage levels is observed for events 

#e second test uses earthquakes that occurred outside 

of these events have been added to the ISNet bulletin from 

percentage of detectable events organized by magnitude class 
using a binning width of 1.2. In this case also, the pickers with 
optimized parameters retrieve a higher percentage of declared 

events of magnitude 6.5. 
Finally, we tested the pickers on a dataset of 49 false events 

produced by the simultaneous occurrence of spurious noise on 
channels of di!erent seismic stations. #ese events have been 
detected by the automatic procedures of ISNet during stormy 
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 Figure 7. Example traces and automatic picks for (A) the 2009.04.06 Aquila (Italy) Mw 6.3 and (B) the 2009.05.18 Colliano (southern 
Italy) ML 2.5 earthquakes recorded at stations of ISNet. The PICK_EW and FP automatic picks obtained with optimized parameters are 
compared with the manual picks. On each trace the black and gray bars are the FP_OPT and PICK_EW_OPT automatic picks, respec-
tively, while the dashed bar at 2 s is the manual pick. TPICK_EW is the automatic PICK_EW_OPT pick; TFP is the automatic FP_OPT pick. 
The four-character code for the manual pick identifies the features of the manually picked arrival. The first letter defines the phase 
onset (emergent or impulsive); the second letter (P) defines the type of wave; the third letter (not always present) indicates the phase 
polarity (up or down); the last number is the quality of manual picks defined according to Table 1. To better show the early phase arriv-
als, the first seconds of the traces in (A) are also represented with amplitude increased by a factor of 10 (gray curves).
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 Figure 8. Results of statistical analysis performed using the optimized picker on recordings of events inside (A) and outside (B) the 
network. The lines indicate the percentage of automatically detected events by PICK_EW (black line), PICK_EW_OPT (gray line), and 
FP_OPT (black dashed line) as a function of the local magnitude ML . The distributions show the number of events used in relation to 
the local magnitude.
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DISCUSSION AND CONCLUSIONS

In this paper we proposed an optimization scheme for improv-
ing the performances of automatic seismic phase pickers by 
using real manual picks and data from a speci"c seismic net-
work. #e strategy is based on the comparison between manual 
picks and automatic measurement of arrival times retrieved by 
automatic picker on a dataset representative of the seismic net-
work. #e dataset is composed of signals of seismic events and 
traces of seismic noise. #e optimal choice of picker parameters 
is performed following a "tness function that quanti"es the 
goodness of a parameter-set in reproducing the manual picks 
and not producing picks on traces with only seismic noise. We 
used the genetic algorithm optimization technique to search 

-
mal parameter-set for each automatic picker. #e genetic algo-
rithm has been used in many optimization problems, and in 

of a multi-parametric model space and for "nding valid models 
veri"ed by a posteriori analysis. In this work we have not tested 

-
lated annealing could be easily introduced into the scheme of 
optimization as an alternative to the genetic algorithm. 

We applied this optimization scheme with the aim of tun-
ing the picker parameters for the picking of high-frequency 
"rst-arrival phases of local and regional events recorded by seis-
mometers at the ISNet network in southern Italy. However, the 
procedure is also applicable to far S-wave picking and regional 
and teleseismic picking where there may be a lower dominant 
frequency of the picked phases. 

#e analysis is performed using two di!erent pickers: the 

et al. 2012, 
this issue). In order to test the retrieved best parameter-sets we 
performed statistical analysis on the automatic picks obtained 
on a dataset of three years of local and regional data acquired 
by the network. When compared with standard parameter set-
tings, the tuned pickers produce a higher number of realistic 

produced by the suggested parameters. Moreover, the distribu-
tions of residuals obtained by comparing automatic and man-
ual picks have a large peak around 0 s and standard deviations 
comparable to the errors of manual onset time measurements. 
Finally, we veri"ed the parameter-set using the automatic 
obtained picks as input of the Earthworm phase association 
routine. With optimized parameters, we found a number of 
correctly detected earthquakes signi"cantly higher than the 

-
gested parameters. #e main di!erences between optimized 
and standard parameter settings are observed for events of low 
energy having relative low signal-to-noise ratio and emergent 

-
eters is unable to pick enough arrival times to enable them to 
be located. 

#e proposed optimization scheme is also a useful tool in 
comparing the performances of di!erent pickers applied to the 
same dataset. In our analysis the two pickers with the optimized 
parameters generally provided similar performances with some 

higher number of correct picks, especially when the "rst arrival 
-
-

ter able to identify local events of small energy, and it produces 
fewer declarations of false events.

DATA AND RESOURCES 

Seismic data used in this study were collected by ISNet 
(Irpinia Seismic Network) managed by AMRA Scarl (Analisi 
e Monitoraggio del Rischio Ambientale). #e data are available 
online at the Web site http://seismnet.na.infn.it -
ity is subject to registration. #e "gures are made by the follow-
ing so$ware packages: Generic Mapping Tools (http://gmt.
soest.hawaii.edu/ http://www.iris.
edu/software/sac/), Gnuplot (http://www.gnuplot.info/), and 
Ploticus (http://ploticus.sourceforge.net/doc/welcome.html). 

http://folk-
worm.ceri.memphis.edu/ew-doc/). #e FP phase detector and 
picker is available in the Java program SeisGram2K (http://
alomax.net/seisgram

available at http://alomax.net/FilterPicker/. #e optimization 
code is available on request from the corresponding author. 
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